Recent Modifications of Hydrothermal Diamond-anvil Cell and its

Applications

I-Ming Chou

Chinese Academy of Sciences, Sanya Inst. of Deep-sea Sci. & Engineering Lab for Experimental Study under Deep-sea Extreme Conditions

Outline

- About HDAC
- About SIDSSE
- Pressure measurements in HDAC
- Applications (Examples):
 - The system KAlSi₃O₈-H₂O
 - -XAFS & structure of hydrothermal solutions
 - T_h measurements in FIs under elevated external pressures in HDAC
- Summary & Future Works

Hydrothermal Diamond Anvil Cell

An improved hydrothermal diamond anvil cell

Jiankang Li, W. A. Bassett, I-Ming Chou, Xin Ding, Shenghu Li, and Xinyan Wang

Citation: Review of Scientific Instruments **87**, 053108 (2016); doi: 10.1063/1.4947506 View online: http://dx.doi.org/10.1063/1.4947506

Tectonic setting of the Tonga–Kermadec arc/back-arc system

A cartoon showing submarine hydrothermal activities at Brothers Volcano Kermadec Arc New Zealand

De Ronde et al. (2011) Mineralium Deposita 46:541-584

A total of nine dives were made: four by Shinkai 6500 and five by Pisces V.

High-pressure cells constructed with fused silica capillary tubes are ideal for the study of submarine hydrothermal reactions for fluids containing C, O, H, and S.

SIDSSE Resarch on Extraterrestrial Oceans

70 x 30 km

Salt-rich ice plums contain 4 to 16-nm silica grains: formed in solution > 90 °C; 40 km depth; pH > 8.5; salinity < 4% (3.2-3.7% for Earth seawater)

A schematic of Enceladus' interior

H-W Hsu *et al. Nature* 519, 207-210 (2015) doi:10.1038/nature14262

(1) Hydrothermal Diamond-anvil cell up to 50 kbar and 1000 °C

- (2) Fused silica capillary cell
 up to 2 kbar and 600 °C
- (3) Cold-seal pressure vessel
 up to to 2 kbar and 850 °C

High pressure high temperature pressure vessels in SIDSSE

Monterey Bay Aquarium Research Institute

Pasteris et al. (2004) Applied Spectroscopy 58: 195A-208A

> (DORISS) deep-ocean Raman in situ spectrometer system

Hydrothermal Diamond Anvil Cell

铁橄榄石 + 石英 = 铁辉石 Fayalite + Qtz = Ferrosilite (Fe_2SiO_4 + SiO_2 = 2 $FeSiO_3$)

Fig. 2. Morphologies and growth patterns of ice V (panels A, B, and C), ice VI (panels D and E), and the new phase (panels F, G, and H). (**A** and **B**) Ice V in water at 9.8°C and 855 MPa ($T_m = 10.1^{\circ}$ C; density $\rho = 1226 \text{ kg/m}^3$). (**C**) Ice V in water at 9.4°C

and 845 MPa. The ice V crystals in (A), (B), and (C) were grown from the same crystallite seed in sequential warming-cooling cycles, and the temperature readings shown at lower right corners were 0.2°C lower than the respective true temperatures. (D) Two ice VI crystals in water at 40.9°C and 1241 MPa (T_m $= 42.6^{\circ}$ C; $\rho = 1268 \text{ kg/m}^3$). (E) The same two crystals of ice VI as in (D), but which were cooled from 40.9° to 40.3°C in 29 s. (F) The new phase in water at 7.7°C and 774 MPa ($T_m = 8.1^{\circ}$ C; $\rho = 1212 \text{ kg/m}^3$). (G) The same crystal as in (F), but which was cooled from 7.7° to 7.0°C in 9 s. (H) The growth pattern of the new phase when cooled rapidly from 7.9° to 7.2°C in a fraction of a second. Note the crystals in (F), (G), and (H) were grown from the same crystallite nucleus in sequential warming-cooling cycles.

100 µm

Fig. 4. Raman spectra of the new ice phase compared with ices I, II, III, V, VI, and water measured in situ in the diamond cell. Ice I is proton disordered; ice II is proton ordered; ice III is partially proton disordered but has a proton-ordered form (ice IX); ice V is partially proton disordered. We suggest that ice VI is partially ordered as well. The spectrum of supercooled water is in good agreement with previous work [for example (27)]. Weak peaks <100 cm^{-1} in that spectrum arise from spurious scattering. The tick marks denote characteristic Raman peaks discussed in the text: bands at 192, 490, 3215, and 3410 cm⁻¹ for the new phase; 145 and 157 cm^{-1} for ice VI; and 95 and 190 cm⁻¹ for ice III. Intensity is given in arbitrary units. Detailed analysis of the spectra of the additional phases will be presented elsewhere.

Chou et al. (1998) Science, v. 281, 809-812 A new liquidus ice phase

Kenji Mibe Earthquake Research Institute University of Tokyo, Japan

> SCF: supercritical fluid F: aqueous fluid Sa: sanidine M: hydrous melt Ms: muscovite C: corundum

Raman study of synthetic subduction-zone fluids (KAlSi₃O₈-H₂O) system

Mibe, Chou, & Bassett JGR, 113 (2008)

Some minerals in the system:

KAISi₃O₈ - H₂O

Corundum AI_2O_3

Mibe, Chou, & Bassett JGR, 113 (2008)

10 58 2 1 9382C . 94 16C

Mibe, Chou, & Bassett JGR, 113 (2008)

Molecule ^a	Frequency (cm ⁻¹) ^b	Motion ^j			
H ₄ SiO ₄ (Mo)	783 (calc) ^c , 785 (exp) ^d , 788 (calc) ^e	n(Si-O)			
KH ₃ SiO ₄ (Mo)	748 (calc) ^f	n(Si-O)			
$H_6Si_2O_7(D)$	620 (calc) ^e , 631 (calc) ^c , 638 (calc) ^g	n(Si-O), d(Si-O-Si)			
H ₆ SiAlO ₇ ¹⁻ (D)	585 (calc) ^g	n(T ^k -O), d(Si-O-Al)			
H ₄ SiAlO ₇ ³⁻ (D)	574 (exp) ^d	n(T-O), d(Si-O-Al)			
$H_6Si_3O_9(3R)$	629 (calc) ^e	n(Si-O-Si)			
$H_{6}Si_{2}AlO_{9}^{1-}(3R)$	574 (calc) ^h	n (T-O-T)			
$H_8Si_4O_{12}$ (4R)	490 (calc) ^h	n(Si-O-Si)			
$H_8Si_3AlO_{12}^{1-}(4R)$	488 (calc) ^h	n(T-O-T)			
Al(OH) ₄ ¹⁻	616 (calc) ⁱ , 620 (exp) ^d	n(Al-O)			
KAl(OH)₄	619 (calc) ^f	n(Al-O)			
KH ₂ AlO ₃	691 (calc) ^f	n(Al-O)			
Al(OH) ₃ H ₂ O	438 (calc) ⁱ	n(Al-OH ₂)			
KOH	361 (calc) ^f	d(K-O-H)			

William Bassett Cornell Univ. USA Alan Anderson St. Francis Xavier Univ. Canada Robert Mayanovic Missouri State Univ. USA I-Ming Chou USGS

in 1*m* ZnBr₂/6*m* NaBr solution, ZnBr₄²⁻ predominant Zn-Br bond length - 0.005 Å/100 °C

Hydrothermal Diamond Anvil Cell

Absorption

CHESS 5.29 GeV 220 mA max.

 $\ln (I_o/I_t)$

in 1*m* ZnCl₂/6*m* NaCl solution: ZnCl₄²⁻ predominant

anti-Stokes

Stokes

Yang, Crerar, & Irish (1988) 1.8 *m* Zn²⁺; 5.02 *m* Br⁻ (Br / Zn = 2.8)

Raman shift (cm⁻¹)

Recent XAFS studies (1998) *Chem. Geol.* – Y (17.038 keV) Ragnarsdorttir et al. Cd (26.711 keV) Randall et al. Sb (30.491 keV) Oelkers et al. all along L-V curves

Electron binding energy (K 1s) Mn < Fe < Co < Ni < Cu < Zn

Yb L_3 -edge (8.944 keV) La L_3 -edge (5.483 keV)

> Anderson et al. (2002) *Amer. Min.*

Mayanovic, Anderson, Bassett, & Chou Rev. Sci. Instrum. 78, 2007; Amer. Mineral. 94, 2009

58	59	\$0	61	62	\$3	2	65	66	67	68	69	2	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	- 94	95	96	97	98	- 99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No	Lr

CI Yb Н₂О

Mayanovic et al. (2002) J. Phys. Chem. 0.006 m YbCl₃ 0.017 m HCl Yb(H₂O)₅Cl₂⁺ Predominant at 500 °C

> Other aqueous species include stepwise complexes $Yb(H_2O)_{x-n}Cl_n^{+3-n}$ (x = 7; n = 0, 1, 2, and 3), which are stable from 300 to 500 °C

Schmidt et al. (1998, Am Min., v. 83, 995-1007)

Homogenization T measurements under elevated external P in HDAC for synthetic pure H_2O inclusion in quartz

Summary & Future Works

