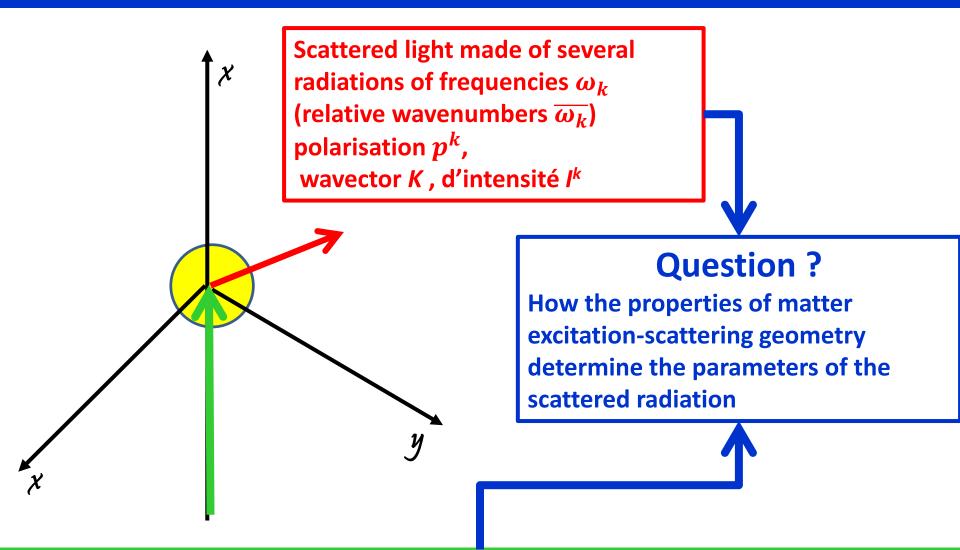
Basic theory of Raman intensity and Raman cross-section: Introduction to the Placzek theory

J.Dubessy

UMR GeoRessources, CNRS-UL

Raman spectroscopic experiment



Incident monochromatic radiation , characterised by its frequency v_L (wavenumber $\overline{v_L}$,), wave-vector, polarisation p^i , intensity-irradiance at the sample

Raman scattering : induced dipoles by the electric field of laser

Induced electric dipole p: by electric field $\mathbf{E}(\mathbf{t})$ from the exciting radiiion: $p = p^{(1)} + p^{(2)} + p^{(3)}$ avec $p^{(1)} \gg p^{(2)} \gg p^{(3)}$

$$p^{(1)} = \alpha \cdot \mathbf{E};$$
 $p^{(2)} = \frac{1}{2}\beta: EE;$ $p^{(3)} = \frac{1}{6}\gamma: EEE$

p⁽¹⁾: (C.m) ; **E** : (V.m⁻¹);

 α : symmetric polarisabilty tensor ($\alpha_{ij} = \alpha_{ji}$) avec $\alpha_{ij} = 10^{-40}$ C. V⁻¹. m²

$$\alpha_{ij} = (\alpha_{ij})_0 + \sum_k \left(\frac{\partial \alpha_{ij}}{\partial_{Q_k}}\right)_0 Q_k + \frac{1}{2} \sum_{k,l} \left(\frac{\partial^2 \alpha_{ij}}{\partial_{Q_k} \partial_{Q_l}}\right)_0 Q_k Q_l + \cdots.$$

For the single normal mode of vibration Q_k :

$$(\alpha_{ij})_{k} = (\alpha_{ij})_{0} + (\alpha'_{ij})_{k,0}Q_{k} \text{ avec } (\alpha'_{ij})_{k,0} = \left(\frac{\partial\alpha_{ij}}{\partial Q_{k}}\right)_{0} \text{ ou } \alpha_{k} = \alpha_{0} + \alpha'_{k}Q_{k}$$

If the oscillator is harmonic: $Q_k = Q_{k,0} \cos((\omega_k t + \delta_k))$ with δ_k , phase / radiation,

$$\boldsymbol{\alpha}_{k} = \boldsymbol{\alpha}_{0} + \boldsymbol{\alpha}'_{k}Q_{k}$$
 et $\boldsymbol{E} = \boldsymbol{E}_{0}\cos\nu_{L}t$, ν_{L} . From $\boldsymbol{p}^{(1)} = \boldsymbol{\alpha}\cdot\mathbf{E}$

 $\boldsymbol{p}^{(1)} = \boldsymbol{\alpha}_{\mathbf{0}} \boldsymbol{E}_{\mathbf{0}} \cos \boldsymbol{\nu}_{L} t + \boldsymbol{\alpha}'_{k} \boldsymbol{E}_{\mathbf{0}} \boldsymbol{Q}_{k,0} \left[\cos \boldsymbol{\nu}_{L} t \right] \times \left[\cos \left(\left(\omega_{k} t + \delta_{k} \right) \right) \right]$

GEORAMAN-XXII-2016 School joint to the

VIIIth International Siberian Farly Career GeoScientists Conference

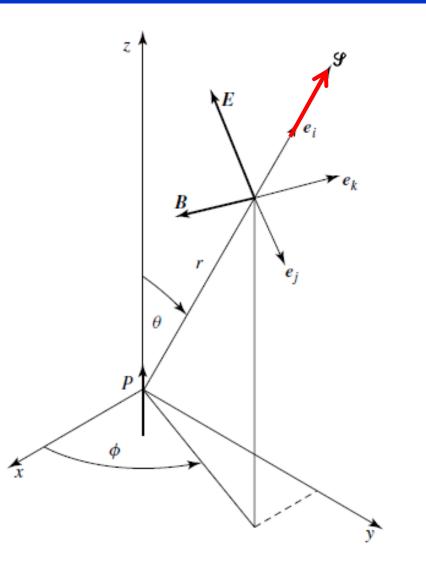
Raman scattering : induced dipoles

 $\boldsymbol{p}^{(1)} = \boldsymbol{\alpha}_{\mathbf{0}} \boldsymbol{E}_{\mathbf{0}} \cos \boldsymbol{\nu}_{L} t + \boldsymbol{\alpha}'_{k} \boldsymbol{E}_{\mathbf{0}} \boldsymbol{Q}_{k,0} \left[\cos \boldsymbol{\nu}_{L} t \right] \times \left[\cos \left(\left(\omega_{k} t + \delta_{k} \right) \right) \right]$ $\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$ $\boldsymbol{p}^{(1)} = \boldsymbol{p}^{(1)}(\nu_{I}) + \boldsymbol{p}^{(1)}(\nu_{I} - \omega_{V}) + \boldsymbol{p}^{(1)}(\nu_{I} + \omega_{V})$ Stokes Raman Anti-Stokes Raman $p^{(1)}(v_L) = p_0^{Ray} \cos v_L t$ avec $p_0^{Ray} = \alpha^{Ray} \cdot E_0$ et $\alpha^{Ray} = \alpha_0$ $\boldsymbol{p}^{(1)}\left(\boldsymbol{\nu}_{L} \pm \boldsymbol{\omega}_{k}\right) = \boldsymbol{p}_{k,0}^{Ram} \cos\{\left(\boldsymbol{\nu}_{L} \pm \boldsymbol{\omega}_{k}\right) t \pm \boldsymbol{\delta}_{k}\}$ $p_{k,0}^{Ram} = \alpha_k^{Ram} \cdot E_0$ avec $\alpha_k^{Ram} = \frac{1}{2} \alpha'_k Q_{k,0}$

Induced electric oscillatory dipoles What is the intensity of a radiation originating from an induced electric oscillatory dipole ?

Oscillatory electric dipole.

Energy Flux Poynting vector



S: Poynting vector: $S = (\mu_0)^{-1} E \wedge B$

In the radiation propagation direction

Energy flux / unit time / surface area = irradiance of electromagnetic radiation

$$\boldsymbol{S} = (\mu_0)^{-1} E_j B_k \big(\boldsymbol{e_j} \wedge \boldsymbol{e_k} \big)$$

$$\boldsymbol{S} = (\mu_0)^{-1} E_j B_k \boldsymbol{e_i}$$

$$S = c_0 (\mu_0)^{-1} (B_k)^2 e_i$$
$$S = \varepsilon_0 c_0 (E_j)^2 e_i$$

E₀ Vacuum electric permittivity

 μ_0 Vacuum magnetic permeability

Oscillatory electric dipole: Average Poynting vector

$$\boldsymbol{E} = \frac{-\omega^2 p \sin \theta}{4\pi\varepsilon_0 c_0^2 r} \boldsymbol{e}_j \qquad \qquad \boldsymbol{B} = \frac{-\mu_0 \omega^2 p \sin \theta}{4\pi c_0 r} \boldsymbol{e}_k$$
$$\boldsymbol{S} = \left(\frac{1}{16\pi^2\varepsilon_0 c_0^3}\right) \frac{\omega^4}{r^2} \left(\boldsymbol{p}^2\right) \sin^2 \theta \boldsymbol{e}_i = \left(\frac{\pi^2 c_0}{\varepsilon_0}\right) \frac{\overline{\omega}^4}{r^2} \left(\boldsymbol{p}^2\right) \sin^2 \theta \boldsymbol{e}_i$$

 $p(\omega) = p_{k,0} \cos{\{\omega t \pm \delta_k\}} \Rightarrow \text{instantaneous}$ Poynting vector

For a 500 nm radiation, period $\tau = 1/\nu = \lambda/c = 5E - 7/3E8 = 1,7E - 15 s$

Detectors only measure averaged energy => only the average Poynting vector

As $(\bar{p})^2 = (1/2)(p_0)^2$:

$$\overline{\boldsymbol{S}} = \frac{1}{2} S = \left(\frac{1}{32\pi^2 \varepsilon_0 c_0^{-3}}\right) \frac{\omega^4}{r^2} p_0^{-2} \sin^2 \theta \boldsymbol{e}_i = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) \frac{\overline{\omega}^4}{r^2} p_0^{-2} \sin^2 \theta \boldsymbol{e}_i$$

Oscillatory electric dipole: energy flux from the dipole

Average power per dA area: $d\Phi = |\overline{S}| dA$ $d\Phi = \left(\frac{1}{32\pi^2 \varepsilon_0 c_0^3}\right) \frac{\omega^4}{r^2} p_0^2 \quad \sin^2 \theta \, dA = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) \frac{\overline{\omega}^4}{r^2} p_0^2 \sin^2 \theta \, dA$

 $dA/r^2 = d\Omega$, thus :

$$d\Phi = \left(\frac{1}{32\pi^2 \varepsilon_0 c_0^3}\right) p_0^2 \omega^4 \sin^2 \theta \, d\Omega = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) p_0^2 \, \overline{\omega}^4 \sin^2 \theta \, d\Omega$$

Oscillatory electric dipole: intensity radiation from the oscillating dipole

Irradiance of electromagnetic radiation = the power per unit solid angle

 $d\Phi$

$$I = \frac{1}{d\Omega}$$
As $d\Phi = \left(\frac{1}{32\pi^2 \varepsilon_0 c_0^{-3}}\right) p_0^{-2} \omega^4 \sin^2 \theta \, d\Omega = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) p_0^{-2} \, \overline{\omega}^4 \sin^2 \theta \, d\Omega$

$$I(W. sr^{-1}) = \left(\frac{1}{32\pi^2 \varepsilon_0 c_0^{-3}}\right) \omega^4 p_0^{-2} \sin^2 \theta = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) \overline{\omega}^4 p_0^{-2} \sin^2 \theta$$

$$\int \Phi$$
Circular frequency, or wavenumber of the oscillatory dipole

Oscillatory electric dipole: number of scattered photons

$$I(W.sr^{-1}) = \left(\frac{1}{32\pi^2\varepsilon_0c_0}\right)\omega^4 p_0^2 \sin^2\theta = \left(\frac{\pi^2c_0}{2\varepsilon_0}\right)\overline{\omega}^4 p_0^2 \sin^2\theta$$

 $\overline{\omega}$ radiation wavenumber scattered by the induced dipole

$$I = k'_{\omega} \omega^4 p_0^2 \sin^2 \theta = k'_{\overline{\omega}} \overline{\omega}^4 p_0^2 \sin^2 \theta \qquad I$$

= 1,671 × 10²⁸ $\overline{\omega}^4 p_0^2 \sin^2 \theta$
Photon number = I(W/sr⁻¹) / single photon energy:

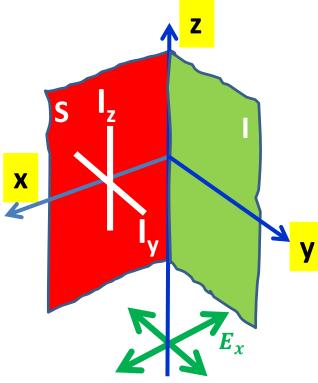
 $E_{photon} = h\nu = hc_0\bar{\nu} = 6,62606957 \times 10^{-34} \times 299792458 \times \bar{\nu} = 1,986 \times 10^{-25} \times \bar{\nu}$

$$N_{photons} = 8,414 \times 10^{50} \times \overline{\omega}^3 p_0^2 \times sin^2 \theta$$

Next step : calculation of $\overline{\nu}^3 p_0^2$

Raman scattering : excitation and scattering geometry

$$p_{k,0}^{Ram} = \alpha_k^{Ram} \cdot E_0 \quad \text{avec} \quad \alpha_k^{Ram} = \frac{1}{2} \alpha'_k Q_{k,0}$$
$$p^{(1)}(\nu_L \pm \omega_k)_{x,0} = \left\{ (\alpha'_{xx})_{k,0} E_{x,0} + (\alpha'_{xy})_{k,0} E_{y,0} + (\alpha'_{xz})_{k,0} E_{z,0} \right\} Q_{k,0}$$
$$p^{(1)}(\nu_L \pm \omega_k)_{y,0} = \left\{ (\alpha'_{yx})_{k,0} E_{x,0} + (\alpha'_{yy})_{k,0} E_{y,0} + (\alpha'_{yz})_{k,0} E_{z,0} \right\} Q_{k,0}$$
$$p^{(1)}(\nu_L \pm \omega_k)_{z,0} = \left\{ (\alpha'_{zx})_{k,0} E_{x,0} + (\alpha'_{zy})_{k,0} E_{y,0} + (\alpha'_{zz})_{k,0} E_{z,0} \right\} Q_{k,0}$$



Incident radiation (polarized laser): 1 component $E_x \perp^i$ perpendicular to incident plane or $E_y \parallel^i$ to incident plane : $E_z = 0$

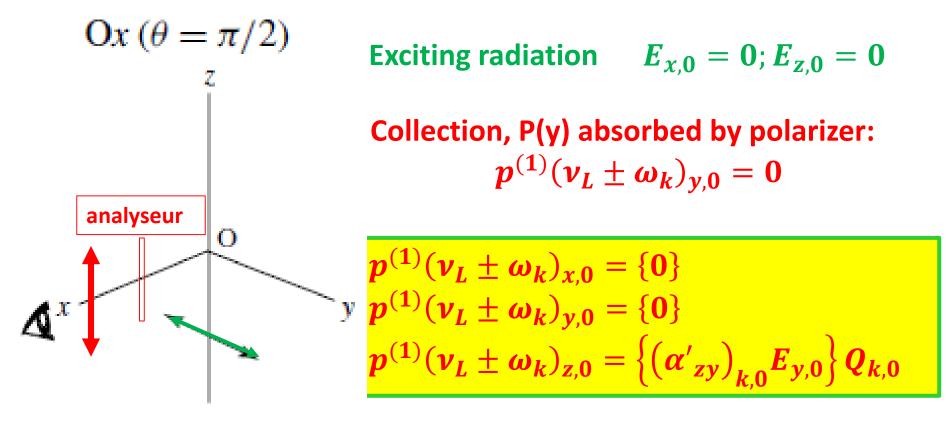
Scattered Raman radiation: 2 components $p_{y_0} \perp^s$ scattering plane $p_{z_0} \parallel^s$ scattering plane; $I_{\chi} = 0$

Raman scattering : excitation and scattering geometry

$$p^{(1)}(\nu_{L} \pm \omega_{k})_{x,0} = \left\{ (\alpha'_{xx})_{k,0} E_{x,0} + (\alpha'_{xy})_{k,0} E_{y,0} + (\alpha'_{xz})_{k,0} E_{z,0} \right\} Q_{k,0}$$

$$p^{(1)}(\nu_{L} \pm \omega_{k})_{y,0} = \left\{ (\alpha'_{yx})_{k,0} E_{x,0} + (\alpha'_{yy})_{k,0} E_{y,0} + (\alpha'_{yz})_{k,0} E_{z,0} \right\} Q_{k,0}$$

$$p^{(1)}(\nu_{L} \pm \omega_{k})_{z,0} = \left\{ (\alpha'_{zx})_{k,0} E_{x,0} + (\alpha'_{zy})_{k,0} E_{y,0} + (\alpha'_{zz})_{k,0} E_{z,0} \right\} Q_{k,0}$$



Raman scattering : excitation and scattering geometry

$$I(W.sr^{-1}) = \left(\frac{\pi^2 c_0}{2\varepsilon_0}\right) \overline{\nu}^4 p_0^2$$

$$p_0 = lpha_k \cdot E_0$$
 avec $lpha_k = rac{1}{2} lpha'_k Q_{k,0}$

Depending on scattering geometry, $p_0 = P_{\sigma,0} = (\alpha'_{\sigma y})_{k,0} E_{y_0} Q_{k,0}$, soit :

$$p_{0}^{2} = \left\{ \left(\alpha'_{\sigma y} \right)_{k,0} \right\}^{2} \left\{ E_{y_{0}} \right\}^{2} \left\{ Q_{k,0} \right\}^{2}$$
$$H = \left(\frac{\pi^{2} c_{0}}{2 \varepsilon_{0}} \right) \overline{\omega}^{4} \left\{ \left(\alpha'_{\sigma y} \right)_{k,0} \right\}^{2} \left\{ E_{y_{0}} \right\}^{2} \left\{ Q_{k,0} \right\}^{2}$$

Irradiance of laser radiation is \mathfrak{I}_L and depends on the electric field value E_{γ_0}

$$\mathfrak{I}_{L} = (1/2)c_0\varepsilon_0 \{E_{y_0}\}^2 \Longrightarrow \{E_{y_0}\}^2 = 2\mathfrak{I}_{L}/(c_0\varepsilon_0)$$

For a single and fixed oscillator

$$I = \left(\frac{\pi^2}{\varepsilon_0^2}\right) \overline{\omega}^4 \left\{ \left(\alpha'_{\sigma y}\right)_{k,0} \right\}^2 \left\{ Q_{k,0} \right\}^2 \mathfrak{I}_L$$

Raman intensity of gas molecules: *notating induced dipoles*

1 single oscillatory induced dipole $\Rightarrow \mathfrak{N}$ oscillatory induced dipoles freely rotating.

Raman radiations: distinct δ_k from exciting radiation \Rightarrow no interferences and addition of all intensities

 $I(\mathcal{N}) = \mathcal{N} \times I(1)$

Freely rotating dipole: term depending on the dipole orientation

$$I = \left(\frac{\pi^2}{\varepsilon_0^2}\right) \overline{\nu}^4 \left\{ \left(\alpha'_{\sigma y}\right)_{k,0} \right\}^2 \left\{ Q_{k,0} \right\}^2 \mathfrak{I}_L \times \mathcal{N}$$

Average of $\left\{ \left(\alpha'_{\sigma y}\right)_{k,0} \right\}^2 = \overline{\left\{ \left(\alpha'_{\sigma y}\right)_{k,0} \right\}^2}$

 $\alpha' = \begin{bmatrix} \alpha'_{xx} & \alpha'_{xy} & \alpha'_{xz} \\ \alpha'_{yx} & \alpha'_{yy} & \alpha'_{yz} \\ \alpha'_{zx} & \alpha'_{zy} & \alpha'_{zz} \end{bmatrix}; \text{ derivative average polarisability } :a' = \frac{1}{3} \left[\alpha'_{xx} + \alpha'_{yy} + \alpha'_{zz} \right]$

derivative anisotropic polarisability:

$$(\gamma')^{2} = \frac{1}{2} \left[\left(\alpha'_{xx} - \alpha'_{yy} \right)^{2} + \left(\alpha'_{yy} - \alpha'_{zz} \right)^{2} + \left(\alpha'_{zz} - \alpha'_{xx} \right)^{2} + 6 \left(\left(\alpha'_{xy} \right)^{2} + \left(\alpha'_{yz} \right)^{2} + \left(\alpha'_{zx} \right)^{2} \right) \right]$$

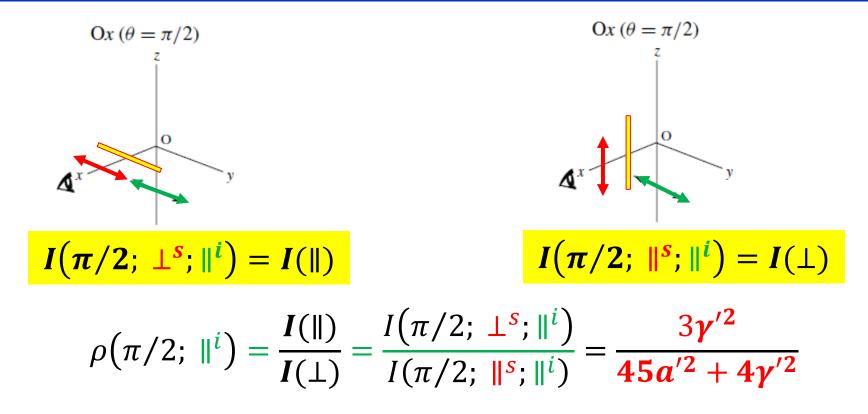
Ecole Wurm de spectroscopie Raman-CNRS / Lyon 3-7/11/2014. Jean Dubessy

Raman intensity depends on the orientations of exciting radiation and of the analysed polarization of the scattered radiation.

$$\overline{\alpha'_{xx}}^{2} = \overline{\alpha'_{yy}}^{2} = \overline{\alpha'_{zz}}^{2} = \frac{45a'^{2} + 4\gamma'^{2}}{45} \quad \overline{\alpha'_{yx}}^{2} = \overline{\alpha'_{yz}}^{2} = \overline{\alpha'_{zx}}^{2} = \frac{\gamma'^{2}}{15}$$
Scattered radiation polarised ||
scattering plane
$$I(\pi/2; ||^{s}; ||^{i}) = I = \left(\frac{\pi^{2}}{\varepsilon_{0}^{2}}\right) \overline{\omega}^{4} \{Q_{k,0}\}^{2} \Im_{L} \times \mathfrak{N} \times \frac{\gamma'^{2}}{15}$$
Incident radiation ||
scattering plane
$$I(\pi/2; ||^{s}; ||^{i}) = I = \left(\frac{\pi^{2}}{\varepsilon_{0}^{2}}\right) \overline{\omega}^{4} \{Q_{k,0}\}^{2} \Im_{L} \times \mathfrak{N} \times \frac{45a'^{2} + 4\gamma'^{2}}{45}$$
If no analyseur for the collection and for à 0 ° ou 180° geometry

$$I(0 \text{ ou } \pi/; \perp^{s} + \parallel^{s}; \parallel^{i}) = \left(\frac{\pi^{2}}{\varepsilon_{0}^{2}}\right) \overline{\omega}^{4} \{Q_{k,0}\}^{2} \mathfrak{I}_{L} \times \mathfrak{N} \times \frac{45a'^{2} + 7\gamma'^{2}}{45}$$

Raman intensity of gas molecules: depolarization ratio



If normal mode totally symmetric, totally polarized, $\gamma' = 0$ and $\rho(\pi/2; \|^i) = 0$: A1 vibrations of CH4, N2, O2, SO4 ²

If Raman band totally depolarized, $a' = 0 \; et \; \rho(\pi/2; \; \|^i) = \frac{3}{4}$

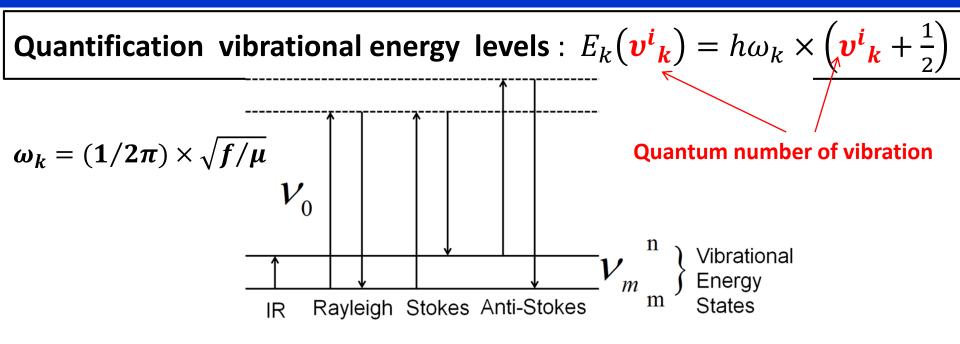
Depolarisation ratio: a tool for the determination of the symmetry class of normal modes

From classical theory of electromagnetism:

- 1) At constant temperature, the intensity of the Stokes line and anti-Stokes line are equal
- 2) The ratio of the Stokes and anti-stokes Raman line of a vibvrational mode does not depend on temperature

Quantum mechanics to reconcile theory with experiments

Quantum mechanics : population term



Number of molecules involved in the Raman transition:

 $\mathfrak{N}_{k,v^{i}} \text{ in initial } \mathbf{E}_{v^{i}_{k}}$ Statistics of Boltzmann $\mathfrak{N}_{v^{i}_{k}} = \mathfrak{N} \times g_{v^{i}_{k}} \times \frac{\exp\left(-E_{v^{i}_{k}}/k_{B}T\right)}{Z_{v,k}}$ $\mathbf{Z}_{v,v^{i}_{k}} = \sum_{k=1}^{\infty} \mathbf{Q}_{v^{k}_{k}} \times \frac{\exp\left(-E_{v^{k}_{k}}/k_{B}T\right)}{Z_{v,k}}$

$$Z_{\nu,k} = \sum_{j} g_{\nu_{k}^{j}} \times exp\left(-E_{\nu_{k}^{i}}/k_{B}T\right)$$

GEORAMAN-XXII-2016 School joint to the

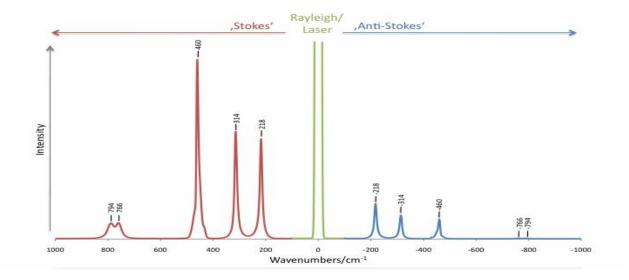
VIIIth International Siberian Early Career GeoScientists Conference

Quantum mechanics : population term

$$f_{v_k}^{i} = \frac{exp\{-(v_k^{i} + 1/2) \times hc_0\overline{\omega_k}/k_BT\}}{\sum_i exp\{-(v_k^{i} + 1/2) \times hc_0\overline{\omega_k}/k_BT\}} = \frac{\mathfrak{N}_{k,v_k}^{i}}{\mathfrak{N}}$$

$$\frac{I(Stokes)(Wsr^{-1})}{I(anti-Stokes)(Wsr^{-1})} = \frac{(\overline{\nu_L} - \overline{\omega_k})^4}{(\overline{\nu_L} + \overline{\omega_k})^4} \times exp\{hc_0\overline{\omega_k}/k_BT\}$$

 $\frac{I(Stokes)(photons.sr^{-1})}{I(anti-Stokes)(photons.sr^{-1})} = \frac{(\overline{\nu_L} - \overline{\omega_k})^3}{(\overline{\nu_L} + \overline{\omega_k})^3} \times exp\{hc_0\overline{\omega_k}/k_BT\}$



Intensity ratio of Stokes and anti-Stokes lines

$\overline{\nu_k}$ (cm ⁻¹)	10	100	1000
$(\overline{\nu_L} - \overline{\nu_k})^3 / (\overline{\nu_L} + \overline{\nu_k})^3$	0,997	0,990	0,853

$$\begin{split} h &= 6,626 \ \times 10^{-34} \text{J. s}; \ c_0 &= 299792458 \ \text{m.s}^{-1}; \ \text{J.} &= 2,9998 \ 1010 \text{m.s}^{-1} \text{k}_{\text{B}} = 1,3806 \ \text{x}10^{-23} \ \text{K}^{-1} \\ \hline \textbf{T} = \textbf{300} \ \textbf{K} \\ \hline \overline{\nu_k} &= 10 \ cm^{-1}, \ exp\{ \textbf{h} c_0 \overline{\omega_k} / \textbf{k_B} \textbf{T} \} = 1,049; \\ \hline \overline{\nu_k} &= 100 \ cm^{-1}, \ exp\{ \textbf{h} c_0 \overline{\omega_k} / \textbf{k_B} \textbf{T} \} = 1,613 \\ \hline \overline{\nu_k} &= 1000 \ cm^{-1}, \ exp\{ \textbf{h} c_0 \overline{\omega_k} / \textbf{k_B} \textbf{T} \} = 1,613 \\ \hline \overline{\nu_k} &= 1000 \ cm^{-1}, \ exp\{ \textbf{h} c_0 \overline{\omega_k} / \textbf{k_B} \textbf{T} \} = 119,2 \end{split}$$

Т (К)	<u>ν</u> _k (cm⁻¹)	I _S / I _{AS}	Т (К)	<u>ν</u> _k (cm⁻¹)	I _s / I _{AS}
300	10	1,046	1300	10	1,008
300	100	1,603	1300	100	1,109
300	1000	101,7	1300	1000	2,571

Important effect of temperature at high Raman wavenumber

GEORAMAN-XXII-2016 School joint to the

VIIIth International Siberian Early Career GeoScientists Conference

90° scattering geometry and non analysed radiation

$$I(\pi/2; \perp^{s}; \parallel^{i}) = \left(\frac{h}{8\varepsilon_{0}^{2}c_{0}\overline{\omega_{k}}}\right)(\overline{v_{L}} \pm \overline{\omega_{k}})^{4} \times \frac{45a'^{2} + 4\gamma'^{2}}{45} \times \frac{\mathfrak{N} \times g_{v_{k}}}{1 - exp\{-hc_{0}\overline{\omega_{k}}/k_{B}T\}} \times \mathfrak{I}_{L}$$

180° scattering geometry and non analysed radiation

Micro-Raman case

$$I(\pi; \bot^{s} + \|^{s}; \|^{i}) = \left(\frac{h}{8\varepsilon_{0}^{2}c_{0}\overline{\omega_{k}}}\right)(\overline{v_{L}} \pm \overline{\omega_{k}})^{4} \times \frac{45a'^{2} + 7\gamma'^{2}}{45} \times \frac{\mathfrak{N} \times g_{v^{i}_{k}}}{1 - exp\{-hc_{0}\overline{\omega_{k}}/k_{B}T\}} \times \mathfrak{I}_{L}$$

PLACZEK THEORY ; Schrötter et Klöckner ,1979); Long (1977; 2002)

Raman scattering cross-sections and gas analysis

$$I_W = \sigma \times \mathfrak{I}_L \times \mathfrak{N} \quad \Rightarrow \sigma = \frac{I_W}{\mathfrak{N} \times \mathfrak{I}_L}$$

Differential Raman corss-section on no-analysed radiation in back-scattering geometry(

$$\frac{d\sigma_k(\overline{\nu_L},\theta)}{d\Omega} = (2\pi)^4 \left(\frac{h}{8\pi^2 c_0 \overline{\omega_k}}\right) (\overline{\nu_L} \pm \overline{\omega_k})^4 \times \frac{45a'^2 + 7\gamma'^2}{45} \times \frac{g_{\nu_k}}{1 - exp\{-hc_0 \overline{\omega_k}/k_BT\}} \times \frac{2\rho_k + (1-\rho_k)\sin^2\theta}{1+\rho_k}$$

 θ : angle between progpagation direction of collected Raman radiation with direction polarisation of exciting radiation.

Relative: diiferential Raman cross-section: measured with respect to the one of N₂:

$$\Sigma^{k,N_{2}} = \frac{\frac{d\sigma_{k}(\nu_{L},\theta)}{d\Omega}}{\frac{d\sigma_{N_{2}}(\overline{\nu_{L}},\theta)}{d\Omega}} \Longrightarrow \frac{d\sigma_{k}(\overline{\nu_{L}},\theta)}{d\Omega} = \sigma'_{k} = \mathbb{Z}^{k,N_{2}} \times \frac{d\sigma_{N_{2}}(\overline{\nu_{L}},\theta)}{d\Omega} = \mathbb{Z}^{k,N_{2}} \times \sigma'_{N_{2}}$$

$$I_{k} = \mathbb{Z}^{k,N_{2}} \times \sigma'_{N_{2}} \times \mathfrak{I}_{L} \times \mathfrak{N}_{k}, \text{ pour } k=1 \text{ à } n$$

$$\mathfrak{N}_{k} = I_{W,k} / (\mathbb{Z}^{k,N_{2}} \times \sigma'_{N_{2}} \times \mathfrak{I}_{L})$$

Raman scattering cross-sections and gas analysis

$$\mathfrak{N}_{k} = I_{W,k} / \left(\mathbb{Z}^{k,N_{2}} \times \sigma'_{N_{2}} \times \mathfrak{I}_{L} \right) et x_{k} = \frac{\mathfrak{N}_{k}}{\sum_{1}^{n} \mathfrak{N}_{k}}$$

$$x_{k} = \frac{I_{W,k}/(Z^{k,N_{2}} \times \sigma'_{N_{2}} \times \mathfrak{I}_{L})}{\sum_{j} I_{W,k}/(Z^{j,N_{2}} \times \sigma'_{N_{2}} \times \mathfrak{I}_{L})} = \frac{I_{W,k}/(Z^{k,N_{2}})}{\sum_{j} I_{W,k}/(Z^{j,N_{2}})}$$

These expressions are calculated for Raman intensity in watt But CCD = photons: $I_{W,k} = I_{photons,k} \times hc_0(\overline{\nu_L} - \overline{\nu_k})$

$$x_{k} = \frac{I_{photons,k} \times hc_{0}(\overline{\nu_{L}} - \overline{\omega_{k}})/(Z^{k,N_{2}})}{\sum_{j} I_{photons,j} \times hc_{0}(\overline{\nu_{L}} - \overline{\omega_{j}})/(Z^{j,N_{2}})} = \frac{I_{photons,k} \times (\overline{\nu_{L}} - \overline{\omega_{k}})/(Z^{k,N_{2}})}{\sum_{j} I_{photons,j} \times (\overline{\nu_{L}} - \overline{\omega_{j}})/(Z^{j,N_{2}})}$$

Renormalisation with respect to the wavenumber $\overline{\omega_{N_2}}$ of Q vibration of N₂:

$$\frac{I_{photons,k}/\left[Z^{k,N_2}/\left\{(\overline{\nu_L}-\overline{\omega_k})/\left(\overline{\nu_L}-\overline{\omega_{N_2}}\right)\right\}\right]}{\sum_j I_{photons,j}/\left[Z^{j,N_2}/\left\{\left(\overline{\nu_L}-\overline{\omega_j}\right)/\left(\overline{\nu_L}-\overline{\omega_{N_2}}\right)\right\}\right]}$$

We define: $Z^{*j,N_2} = \frac{Z^{j,N_2}}{\{(\overline{v_L} - \overline{\omega_j})/(\overline{v_L} - \overline{\omega_{N_2}})\}}$: corrections to be done by normalisation / Q(N₂)

GEORAMAN-XXII-2016 School joint to the

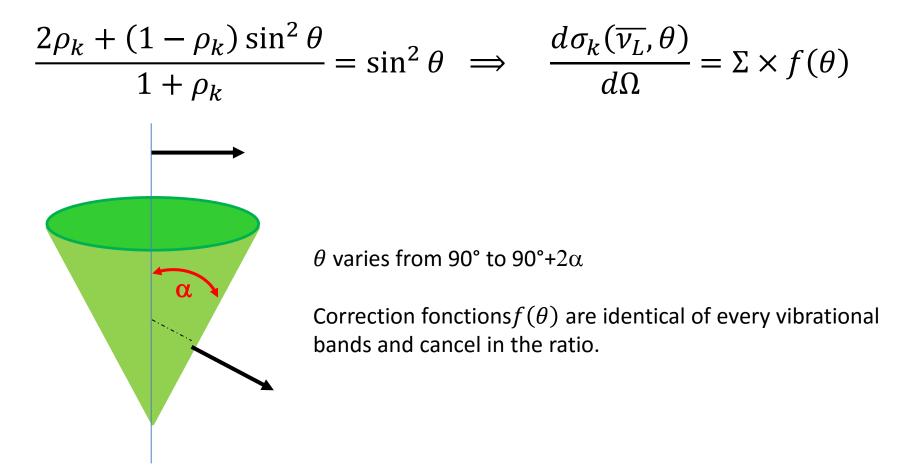
VIIIth International Siberian Early Career GeoScientists Conference

 $Z^{*j,N_2} = \frac{Z^{j,N_2}}{\left(\left(\overline{\nu_L} - \overline{\omega_j}\right) / \left(\overline{\nu_L} - \overline{\omega_{N_2}}\right)\right)}$

NuL	NuN2	NuL-NuN2	GAZ	Nuj	Zj/N2	NuL-Nuk	correction	Z*j/N2
19435	2331	17104	SO2	1150	5,51	18285	1,069	5,15
19435	2331	17104	CO2	1285	0,99	18150	1,061	0,93
19435	2331	17104	CO2	1288	1,5	18147	1,061	1,41
19435	2331	17104	CO2	2143	0,99	17292	1,011	0,98
19435	2331	17104	H2S	2610	6,81	16825	0,984	6,92
19435	2331	17104	CH4	2917	8,7	16518	0,966	9,01
					-		_	
19435	2331	17104	H2O	3657	2,51	15778	0,922	2,72
19435	2331	17104	H2	4155	2,2	15280	0,893	2,46

CO2,CH4, CO, H2S, N2, O2, H2,SO2)

Totally symmetric vibrational modes: $\rho_k = 0$:



Raman scattering cross-sections in liquids: internal field effect

 $\varepsilon_r > 1 \text{ ou } n > 1 \Rightarrow \nearrow$ by a factor Λ : Onsager's theory

$$\Lambda(\overline{\nu_L}, \overline{\nu_k}) = \frac{n(\overline{\nu_L} - \overline{\omega_k})}{81 \, n_{\overline{\nu_L}}} \times \left(n_{(\overline{\nu_L} - \overline{\omega_k})} + 2\right)^2 \times \left(n_{\overline{\nu_L}} + 2\right)^2 \approx 1,29 \text{ for CO}_2$$

$$\sigma'_{k,L} = \sigma'_{k,V} \times \Lambda(\overline{\nu_L}, \overline{\omega_k}) = \sigma'_{k,\nu} \times \frac{n_{(\overline{\nu_L} - \overline{\omega_k})} \left(n_{(\overline{\nu_L} - \overline{\omega_k})^{+2}}\right)^2}{81 n_{\overline{\nu_L}}} (n_{\overline{\nu_L}} + 2)^2$$
$$\sigma'_{N2,L} = \sigma'_{N2,V} \times \frac{n_{(\overline{\nu_L} - \overline{\omega_{N_2}})} \left(n_{(\overline{\nu_L} - \overline{\omega_{N_2}})^{+2}}\right)^2}{81 n_{\overline{\nu_L}}} \times (n_{\overline{\nu_L}} + 2)^2$$
$$\Sigma^{k,N_2,L} = \frac{\sigma'_{k,L}}{\sigma'_{N2,L}} = \frac{\sigma'_{k,V}}{\sigma'_{N2,V}} \times \frac{n_{(\overline{\nu_L} - \overline{\omega_{N_2}})} \left(n_{(\overline{\nu_L} - \overline{\omega_{N_2}})} + 2\right)^2}{n_{(\overline{\nu_L} - \overline{\omega_{N_2}})} \left(n_{(\overline{\nu_L} - \overline{\omega_{N_2}})} + 2\right)^2$$

Very small variations of refractive indices (-0,0005 per 1000 cm⁻¹ for dense CO₂ (1,23 g.cm⁻³) negligle effects on ratio of relative Raman cross sections

Raman scattering cross-sections and molecular interactions distinct from hydrogen bonds

Molecular interactions may modify α and α' by change of the electron distribution and even of the symmetry.

Few experimental data: due to difficulties (solid angles of collection, reflection, reference,...)

In the system CH_4 (90 mole %)- N_2 (10 mole %): variation of 30% of RCS ratio of CH_4 and N_2 , 1bar < P <1000 bar (Seitz et al., 1996).

In other systems (CCl₄, CHCl₃, CDCl₃, CH₂Cl₂, CD₂Cl₂; C₆H₆): variations < 20 %, depending on the vibrational modes (Schrötter et Klöckner, 1979).

Raman intensity in aqueous solutions: unit concentrations

$$I_{phot,i}^{\nu_k} = \sigma_i^{\nu_k} \times \mathfrak{N}_i \times \mathfrak{T}_L = \sigma_i^{\nu_k} \times [C_i] \times V \times \mathfrak{T}_L$$

[C_i]: Molarity: mole i .dm⁻³; V : collected excited emitting volume

$$\begin{bmatrix} C_i \end{bmatrix} = (1000\rho - \sum_j [C_j]\overline{M_j}) \times m_i / 1000; \qquad \rho : \text{specific mass of solution (g.cm}^3)$$

$$m_i: \text{ molality: mole i .kg}^3 \text{ H}_2 \text{ O} \qquad \overline{M_i}: \text{ molar mass of solute i}$$

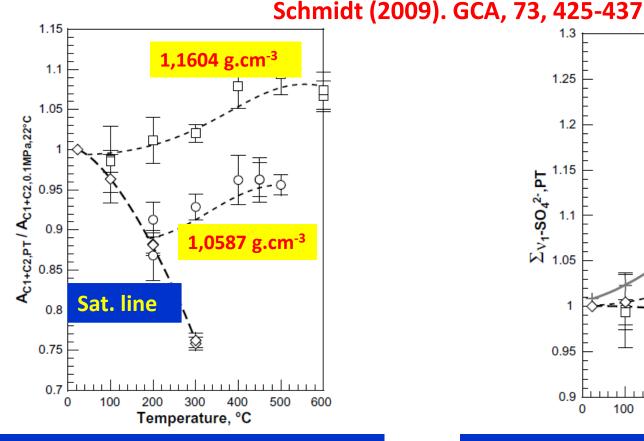
$$I_{phot,H_20}^{\nu_R} = \sigma_{H_20}^{\nu_R} \times \mathfrak{N}_{H_20} \times \mathfrak{T}_L = \sigma_{H_20}^{\nu_R} \times [C_{H_20}] \times V \times \mathfrak{T}_L$$

$$[C_{H_20}] = \frac{(1000\rho - \sum_j [C_j]\overline{M_{H_20}})}{\overline{M_{H_20}}}$$

$$\frac{I_{phot,i}^{\nu_R}}{I_{phot,H_20}^{\nu_R}} = \frac{\sigma_i^{\nu_R}}{\sigma_{H_20}^{\nu_R}} \times \frac{\overline{M_{H_20}}}{1000} \times m_i = f\left(\sigma_i^{\nu_R}, \sigma_{H_20}^{\nu_R}\right) \times m_i$$

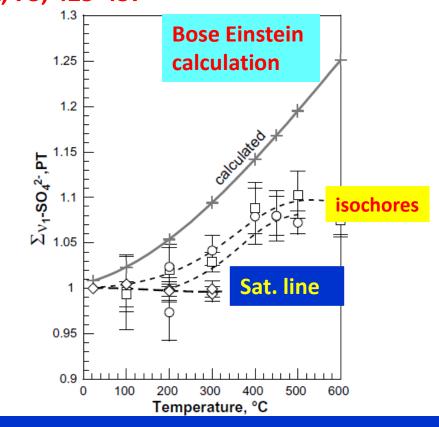
The intensity ratio of a Raman band of a solute and a vibrational band of water is proportional to the solute concentration in the molality scale. Requires $(\sigma_i^{\nu_k}/\sigma_{H_20}^{\nu_R})$ is constant versus solute concentration. Requires constant P, T and constant fluid bulk chemistry except for solute i.

Raman cross section of a solute f(T,P) : sulfate in water , A₁ mode



Saturation line: intensity decrease follows density decrease

High density isochores: different behaviour



Saturation line: near constant RRCS because bond expansion.

Positive correlations with pressure/density < than calculated. Anharmonic vibration ?

Huge experimental and theoretical works to be done

Raman cross section f(T,P,X)

$$\frac{d\sigma_k(\overline{\nu_L},\theta)}{d\Omega} = (2\pi)^4 \left(\frac{h}{8\pi^2 c_0 \overline{\nu_k}}\right) (\overline{\nu_L} \pm \overline{\nu_k})^4$$

$$\times \frac{g_{v^{i}_{k}}}{1 - exp\{-hc_{0}\overline{v_{k}}/k_{B}T\}} \times$$

 $\frac{45a'^2+7\gamma'^2}{45}$

MOLECULAR INTERACTIONS: SOLVATION, HYDROGEN BONDS

Huge experimental and theroretical works to be done

Raman intensity (photons/s): $I_{photons}(v) = C \times (v_L - \omega_k)^3 \times \frac{1}{\omega_k} \times \frac{1}{B(T)} \times S_k$

C, instrument factor,

- v_L frequency of laser radiation, ω_k Raman frequency
- 1/B(T), Bose Einstein factor, $1/B(T) = (1 \exp(-hc\overline{\omega_k}/k_BT))^{-1}$
- S_k , molar activity of Raman scattering for vibrational mode k at frequency v_k

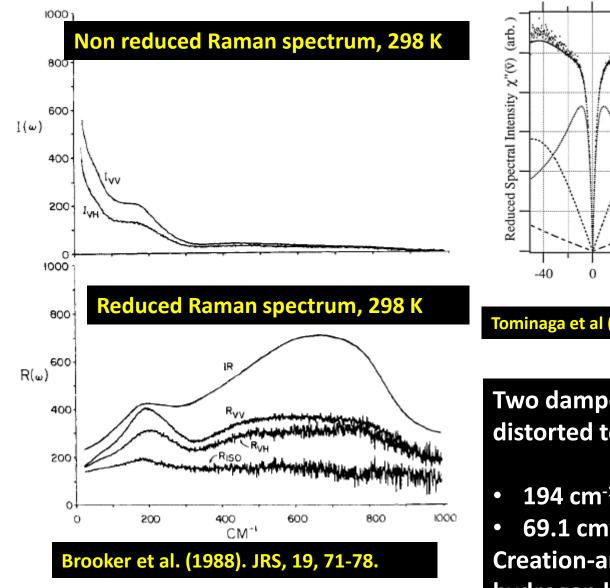
Frequency part $(v_L - \omega_k)^3 \times \frac{1}{\omega_k}$ and temperature part superimpose to the intrinsic value of intensity within S_k , especially at < 1000 cm⁻¹.

Reduced Raman spectrum:

 $R_{photons}(\nu) = I_{photons}(\nu) \times (\nu_L - \omega_k)^{-3} \times \omega_k \times B(T)$

Integrated intensity of ω_k Raman band = transition moment or $(\partial \alpha / \partial Q_k)^2$ Reduced spectrum can be compared to Infrared spectrum Intensity of reduced spectrum is independent on temperature Useful for disordered solids, glasses in the 100-200 cm⁻¹

Reduced Raman spectrum: water study, intermolecular modes



(0), X (1) Relaxation mode Bending mode Generation Stretching mode 40 0 40 80 120 160 200 240 Raman Frequency (cm⁻¹)

Tominaga et al (1998) Fluid Phase Equilibria, 144, 323-330

Two damped oscillators of a transient distorted tetrahedron of 5 water :

- 194 cm⁻¹: stretching
- 69.1 cm⁻¹: bending
 Creation-annihilation mode of
 hydrogen bond à 8 cm⁻¹

Some references :

D.A. Long (1977). Raman Spectroscopy. McGraw-Hill International Book Company

H.W. Schrötter, & H.W. Klöckner (1979): Raman scattering cross sections in gases and liquids. Pp 123-166 in: *Raman Spectroscopy of Gases and Liquids* (A. Weber editor). Topics in Current Physics. Springer-Verlag.

D.A. Long (2002). The Raman effect. John Wiley and Sons.

J. Dubessy, M.-C. Caumon, F. Rull (2012). Raman Spectroscopy applied to Earth Sciences and cultural Heritage. European Mineralogical Union, EMU Notes 12.