Vibrational and raman spectroscopy of nuclear waste forms and technogenic radioactive minerals from severe nuclear accidents

Shiryaev A.A.

Institute of Physical Chemistry and Electrochemistry, Moscow, Russia [\(shiryaev@phyche.ac.ru\)](mailto:shiryaev@phyche.ac.ru)

Outlook

- Nuclear cycle & Nuclear waste
- Selected examples of spectroscopic applications
- "Mineralogy" of nuclear accidents

Spectroscopy of radioactive materials: Just a scientific curiosity?

Immobilisation of actinides – background

- 17% of electricity in the world is generated by Nuclear Power Plants (NPP).
- Average civilian NPP produces 10-12 kg of plutonium per year per MWt + several kilogramms of "minor" actinides (Am, Np, Cm => tens of tons per year globally.
- Half-life of ²³⁹Pu is 24100 years. $T_{1/2}$ ²³⁷Np = 2.14 million years. "Full" decay requires 10 half-lifes…
- Plutonium and neptunium are highly dangereous due to high specific activity and are chemically toxic.
- Danger of proliferation $({\sim}6 \text{ kg of }^{239}\text{Pu}$ metal or ${\sim}60 \text{ kg of}$ 237 Np is sufficient for a bomb...).

Immobilisation of actinides – background

Activity units:

Becquerel – one decay per second - **very low activity**.

- Activity of 1 gram of potassium due to 40 K is approx. 31 Bq.
- **Curie** 3.7×10^{10} decays per second **very high activity!!!**

Amount of a radionuclide which does NOT require special permission to handle (Soviet Radiation safety rules from 1987)

Nuclear power generation: Fuel

- UO₂ pellets. ²³⁵U content varies from natural (0.7%) to 2-8%. Advantages: mature technology, high thermal conductivity, relatively low swelling, not very reactive (e.g. with water)
- Rarely: UC, UN, U metal (old reactors), U-Be.... for special purposes or experimental reactors. Unclear behaviour in operation conditions and complicated reprocessing.
- Thorium cycle (India). Waste with nasty 233 U. Reprocessing differs from conventional.
- MOX (Mixed Oxide) (and ReMiX)– $UO_2 + 5-10\%$ PuO₂. Potentially very promising; employed in some European and Russian reactors.

Nuclear power generation: Fuel

 $UO₂$ pellets are packed into sealed fuel rods 3-6 meters long made from corrosion-resistant alloys (often Zr-Nb

- zircalloy, sometimes Al-alloys; stainless steel).

Core: 86 600 kg U, 2.6% 235 U; critical mass 38.5 kg 235 U; burn-up 27 500 MWd t⁻¹; refueling 1/5 of core annually; storage pool for 125 t fuel; core volume 38 m³.

Fuel element: \rm{UO}_2 pellets, 1.43 cm diameter; 49 rods per assembly; 444 assemblies in core; enrichment 2.6% $^{235}\rm{U}$; Gd_2O_2 burnable poison; zircaloy cladding 0.8 mm.

Periodic Table of Elements | fuel (SNF)

Рис. 1. Кривые распределения продуктов деления актинидов в зависимости от их масс и энергии нейтронов: 1 - ²³²Th (быстрые нейтроны), 2 - ²³⁵U + ²³⁸U (быстрые нейтроны), 3 - ²⁴⁵Сm (тепловые нейтроны), 4 - ²⁵²Cf (спонтанное деление). Данные (The JEFF-3.1/-3.1.1..., 2009).

Рис. 2. Различия в составе продуктов деления (масс.%, сумма всех ПД принята за 100 масс.%) в ОЯТ UO₂ и ОЯТ UO₂ - PuO₂ (MOX), выгорание 60 ГВт сутки / тонна (Nuclear Waste..., 2009).

At average burn-up SNF contain approx. 35 kg of fission products (partly gaseous) per ton of U

Handling of Spent Nuclear Fuel

- Irradiated fuel rods are physically chopped into pieces and dissolved in concentrated nitric acid.
- U and Pu could be extracted chemically with ~99% yield (e.g. PUREX-process).
- Some extraction processes may remove minor actinides (Np, Am, Cm…). Room for further work…

Chemical composition of vitrified waste (wt.%)

T – target composition, V – vitreous phase composition, WL – waste loading, nd – not determined, * F,Cl, P2O⁵ , SO³ , SrO, Cs2O, PbO, REEs, actinides.

Open and closed cycles

Due to accumulation of neutron absorbers (neutron poisons), swelling, cracking etc. only 3-5% of U contained in fuel can be used in one campaign. This fraction can be increased by use of higher ²³⁵U enrichment or MOX.

Fuel rods are removed from reactor and cooled in pools for several years.

Two principal further ways of handling SNF:

- Recycling of Pu and U with production of radioactive waste (Russia, France…)
- Disposal of SNF (USA…)

Role of spectroscopy

- Fundamental physics/materials science
- Understanding of structural peculiarities of the forms
- Non-destructive measurements (attention to sample heating)
- Possibility of investigation of very small samples and/or high spatial resolution
- Environmental studies of highly diluted actinides

Actinide Oxygen Systems (from talk by Prof. D.L. Clark)

- Deceptively simple formula (AnO₂) and cubic structure masks an incredibly complex behavior
- Due to multiplicity of oxidation states (III-VI), actinides are prone to formation of nonstoichiometric systems – PuO_{2+x}

Clark, et al *Chem Act Transact Elements*, **2006**, *813*

• Uranium and plutonium oxygen systems are among the most complex oxide systems known 1200

Edelstein, et al *Chem Act Transact Elements*, **2006**, *1753*

- Despite years of effort, the picture, including the phase diagram, is far from complete
	- discrepancies and contradictory results

• Understanding ordered $AnO_{2.0}$ is the prerequisite to understanding impure, or disordered materials found in most use scenarios

Raman of AnO2+x

Manara and Renker, 2003

Immobilisation of actinides

- High-purity Pu (weapons-grade, i.e. mostly ²³⁹Pu with low amounts of 238, 240Pu) can be used in new generation of power plants in MOX (mixed oxide) fuel.
- Lower quality Pu, "scrap" etc. is <u>not</u> suitable economically for $MOX \Rightarrow must be safely immediately into this equation.$ The safely immobilised (in US ~20 metric tons…+ Russia, UK, France, China…).

Composition of waste for immobilisation heavily depends on initial fuel chemical and isotopic composition, cladding type, burn-up degree.

No universal form (matrix) for all waste types can be made!!

Waste separation for subsequent separate immobilisation is extremely important.

Forms for immobilisation

- Cements (for low-activity waste)
- Glasses (e.g., borosilicate, phosphate)
- Glass-ceramics
- Ceramics

Courtesy by B.Burakov

VITRIFICATION Pouring glass to immobilize radioactive waste.

Forms for immobilisation: Principal requirements

- **High capacity** for waste incorporation *without* formation of individual phases.
- Radwaste may release considerable amount of heat: a canister may be heated to 200-300 \degree C => **thermomechanical stability.**
- **Low leach rate** of radionuclides on contact with hot water/steam (MCC tests -90 °C).
- **Technological feasibility**.

Glasses

Disordered structure allows incorporation of many elements

Borosilicate glasses:

• **Advantages:** rather resistant to corrosion; matured technology.

Drawbacks: require high temperatures; limited capacity for some important waste streams (e.g., negligible solubility of Mo-Tc-Ru-Pd or alkalis).

Phosphate glasses:

- **Advantages:** matured technology less sophisticated than for borosilicate glasses; easily adapted for waste composition (e.g. accepts alkaline stream).
- **Drawbacks:** less resistant to corrosion; devitrified at relatively low temperatures.

Furnace EP-500/5 (Mayak, Russia)

Kozlov V.P.

Scanning Electron Microscopy of Uranium-loaded glass

A case study: Pu-loaded Lanthanide-Borosilicate glass

- Maximum PuO₂ concentration in conventional borosilicate glasses is ~2-3 wt.%. Lanthanide-Borosilicate (LaBS) glasses were designed to incorporate up to \sim 10 wt.% PuO₂ (*Strachan et al.*, 1998).
- *Behaviour of Pu and of some other constituents in LaBS glasses and its long-term stability is still poorly constrained.*

The glass seems to be homogeneous on mm-scale (RBS data), but is **markedly** heterogeneous on sub-mm scale if high PuO₂ loads are used!

Phase composition of the LaBS glass (9.5 wt% PuO²)

Identified phases (XRD+SEM/EDX)

PuO² : crystallites with sizes of >50 nm. **Solid solution of (Pu, Hf)O²** with a fluorite structure (SEM/EDX/XRD) **<u>Britholite:</u>** (approx. $\text{REE}_{10}\text{Si}_6\text{O}_{24}(\text{OH})_2$) is a "real" powder.

The "heavy spots": a closer look

Precipitates of (Pu, Hf)O² solid solution and of REE-Al phase!! Dendritic morphology consistent with CaF² -structural type dendrites Exsolution (rapid?) of excess PuO² ?

Alteration of Pu-rich glass

Mineral-like ceramics Zircon as a form for actinides immobilisation

Flux-grown zircon with 6 wt% of Pu

• XANES confirms that Pu is tetravalent, i.e. most likely it substitutes Zr^{4+} in zircon lattice.

Image by R.E.Williford, PNNL

Principal problem: degradation due to self-irradiation

Zircon amorphises under irradiation (metamictisation). Still conflicting results on amorphisation dose and chemical resistance of metamict zircon.

Samples

Single crystals:

a) Zircon doped with 2.4 wt% ²³⁸Pu ($T_{1/2}$ = 87.7 y), grown in July 2001. $\sim 5x10^{17}$ decays/gram.

b) Eu-monazite doped with 4.9 wt% ²³⁸Pu, grown in Dec. 2003. Now approx. $\sim 1x10^{19}$ decays/gram.

At \sim 1.1x10¹⁸ decays/gram dispersed particles has appeared; at \sim 5.2x10¹⁸ decays/gram "peeling" has started.

500 u

Polycrystalline ceramic:

La-monazite doped with **8.1 wt.% of ²³⁸Pu**. Synthesized in 2002.

Methods: Raman, SC-XRD, XAFS, TEM

Single crystals of Eu0.95Pu0.05PO⁴

Single crystals of Eu0.95Pu0.05PO⁴

Environmental studies

Pu/Am Soil Contamination – 903 Pad (from talk by Prof. D.L. Clark)

wind & rain spread Pu/Am-contaminated soils to east & southeast Legend

RFCA : 0.15 pCi/L

Environmental studies Colloids-assisted transport of actinides

- Novikov A.P., Kalmykov S.N., et al., Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia. Science, 2006, 314, 638-641
- Kersting et al., 1999

Colloids-assisted transport of actinides: Spectroscopy

U(VI), Pu and Cm possess bright and characteristic fluoresence. Time-resolved life-time fluorescence (TRLIFS) is widely used for examination of actinides species.

Nuclear accidents

Fukushima Japan, March 11, 2011

Three-mile island NPP, USA March 28, 1979

Chernobyl NPP USSR, April 26 1986

Chernobyl lavas

Kurchatov Institute Report

Heat generation

Lagunenko, 2008

System **UO2+ZrO2+Al,Mg-silicates** *(+steel)*

Interaction of UO_2+ZrO_2 **concrete/sand**

Chernobyl lavas

Hot (1600-2300 °C) UO² fuel alloyed with zircalloy cladding contacted with concrete and metal constructions forming lava-like fuel-rich flows. They contain major fraction of the fuel from the reactor (>90 tons).

black ceramics brown ceramics

black ceramics brown ceramics

Polychromatic ceramics

pumice

Kurchatov Institute Report; B.E.Burakov, KRI

Samples

Samples

• Bulk pieces of black and brown bulk lava.

•Aerosols collected in the vicinity of a lava heap in 2011-2013 using dedicated air pump (10-12 hours).

•Particles collected during several months exposure (2012-2013) on a tray <1 meter from the lava heap ("jumping particles").

Vibrational spectroscopy: glassy matrix

Spectra typical for depolymerised metaluminous silicate glasses *(e.g., Mysen and Toplis, 2007)*. The matrix is **anhydrous**, OH-groups are associated with inclusions.

Inclusions

UO2+x inclusions

Undissolved fuel pellet?

UO² precipitated from the melt *always* **contains Zr admixture**

Variable morphology :

- **Dendrites (quenched supersaturated solution?)**
- **Rounded ("molten") pieces**

Presence and strength of the electron scattering band indicates minor deviations from UO_2 stochiometry

Inclusions of high-U zircon (chernobylite)

Inclusions of high-U zircon (chernobylite), Zr-U-O and ZrO²

• Often complicated internal structure.

- Principal inclusions are ZrO_2 , UO_2 . Can be present in all growth zones. Steel balls are never trapped.
- Formation temperature: $1200 < T < 1650$ °C.
- Zircons grew at the expense of Zr-U-O phase and high-temperature tetragonal ZrO_2 , stabilised by UO_2 (EBSD and Raman results).

Inclusions of high-U zircon (chernobylite), Zr-U-O and ZrO²

Contrary to expectations zirconia is *not* exclusively monoclinic! Raman and EBSD suggest presence of tetragonal modification (U-stabilised?). 1 8

Moisture-induced spontaneous transition of tetragonal zirconia to monoclinic phase is accompanied by considerable volume increase: possible mechanism of the lava cracking.

Spectroscopy of radioactive materials: Just a scientific curiosity?

NO! It is an important and versatile tool